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Abstract. The previously derived perturbational-variational Rayleigh-Ritz (PVRR) matrix 
formalism for calculating the Rayleigh-Schrodinger (RS) perturbation series of the normal 
modes of astrophysical and other classical systems is greatly strengthened so as to make 
it a powerful tool for applying large-order perturbation theory to the study of both classical 
and quantum mechanical eigenvalue problems; the underlying generalised Sturm-Liouville 
type perturbed eigenvalue equation is encountered in many branches of physics. The 
original formalism is first modified by introducing a number of auxiliary matrices which 
render it amenable to the recursive calculation of the RS series of eigenvalues, eigenvectors, 
and related expectation values. It is then extended to large perturbational order by 
deriving and incorporating the generalised PVRR remainder and Hellmann-Feynman 
theorems; these PVRR matrix theorems include the corresponding RS quantum mechanical 
theorems as special cases. 'The resultant modified and extended formalism is applicable 
to an arbitrary Rayleigh-Ritz (linear variational) Ansatz and enables, in a single computer 
run, the accurate recursive calculation to extremely high perturbational order of the PVRR 
series of all eigenstates. 

1. Introduction 

In the context of a generalised Sturm-Liouville type (see e.g. Courant and Hilbert 
1953) perturbed eigenvalue equation of classical origin, a perturbational-variational 
Rayleigh-Ritz (PVRR) matrix formalism has previously been developed (Silverman 
and Sobouti 1978) and applied (Sobouti and Silverman 1978, Sobouti 1978) to the 
calculation of the Rayleigh-Schrodinger ( RS) perturbation series of normal modes 
(eigenvalues and eigenvectors) in certain oscillating astrophysical systems; excellent 
results were obtained in this manner. The PVRR approach, however, is not limited to 
astrophysical problems since the Sturm-Liouville eigenvalue equation is encountered 
in many branches of physics. In this paper, we modify and extend the PVRR formalism 
so as to make it a powerful tool for applying large-order perturbation theory (LOPT) 
to the study of both classical and quantum mechanical systems. 

LOPT has been a subject of increasing interest since the fundamental work of 
Bender and Wu (1969) and of Simon (1970) on the anharmonic oscillator in connection 
with quantum field theory. The principal goals of LOPT are to generate very high-order 
(typically, 100th) RS perturbation series with great accuracy, to study their asymptotic 
properties with the view in mind of determining the functional behaviour of the 
solutions, and to sum the series exactly. These developments have recently been 
thoroughly reviewed by Zinn-Justin (19811, Simon (1982), and e i i ek  and Vrscay 
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(1982). Until now, LOPT has not been applied to classical eigenvalue problems. 
Indeed, its application has been restricted thus far to a few one-particle quantum 
mechanical systems, such as the anharmonic oscillator and the Stark and Zeeman 
effects for the hydrogen atom, for which the exact RS series can be determined 
analytically to arbitrarily high order. Although these series are strongly divergent, 
they can be summed by a number of powerful LOPT methods, e.g. the recently 
introduced summability procedure of Silverman (1983a) and references cited 
therein. 

Evidently, it would be of considerable interest to broaden the scope of LOPT to 
both classical and larger quantal systems. For such systems, however, it is not yet 
possible to obtain the exact RS series analytically to high order and one must employ 
numerical approximation methods which combine the variational principle with per- 
turbation theory. The extended PVRR procedure presented here represents such a 
numerical method, which generalises and strengthens the earlier Dalgarno-Drake 
(DD) and other closely related quantum mechanical matrix formulations of RS perturba- 
tion theory (Dalgarno and Drake 1969, Imamura 1968, Brandas and Goscinski 1970, 
Carb6 1970, 1972, Carb6 and Gallifa 1972). Further, it has been shown (Brandas 
and Goscinski 1970, Sanders 1972) that the Hylleraas-Scherr-Knight (HSK) vari- 
ational-perturbational procedure (Hylleraas 1930, Scherr and Knight 1963) and the 
DD matrix formulations are, in fact, entirely equivalent if a fixed linear basis is used 
throughout in the former. Both the HSK and DD methods have been widely applied 
to compute low-to-moderate-order RS 1/Z series (where Z is the nuclear charge) 
of the non-relativistic electronic states of M- electron atomic isoelectronic sequences 
for M s 4. Recently, it has been theoretically demonstrated (Silverman 1981) that 
the radii of convergence of the RS 1/Z series are quite small. Since this and other 
available evidence suggest that RS series with poor convergence properties are the 
rule rather than the exception, LOPT studies are of great importance. 

Conventional RS perturbation theory as applied to the time-independent Schrodin- 
ger equation (see, e.g., the review of Hirschfelder et a1 1964) is inefficient with respect 
to LOPT because evaluation of the RS series of the exact eigenfunction through n th 
order, n = 0, 1 , .  . . , only suffices to compute the RS series of the exact eigenvalue 
through (n + 1)th order. Similarly, combination (Carr 1957) of the Hellmann- 
Feynman theorem (Hellmann 1937, Feynman 1939) with RS perturbation theory, 
although a valuable supplementary procedure, also only yields the eigenvalue to one 
order higher than the eigenfunction. 

Crucial to the implementation of LOPT is the well known RS quantum mechanical 
theorem (Hylleraas 1930, Dalgarno and Stewart 1956, Dupont-Bourdelet et a f  1960, 
Scherr and Knight 1963, Hirschfelder et a1 1964, Lowdin 1965, Hirschfelder 1969) 
which states that the exact eigenfunction series through n th order yields the exact 
eigenvalue series through (2n + 11th order. The theorem also applies to the approxi- 
mate quantities furnished by the HSK and DD approaches (Brandas and Goscinski 
1970, Watson and O’Neil 19751, to the perturbation series obtained within Hartree- 
Fock (Langhoff et a1 1966) and extended Hartree-Fock (Coulson and Hibbert 1967, 
Hibbert 1967) theory, and to the perturbational-variational series derived from an 
arbitrary variational Ansatz containing any number and type of adjustable variational 
parameters (Silverman and van Leuven 1967, 1968). In accordance with our previous 
usage (Silverman and van Leuven 1967, Epstein 1968), we refer to these (2n + 1) 
theorems collectively as the remainder theorem although some authors designate them 
as Wigner theorems. The general content of the remainder theorem easily follows 
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(Sinanoglu 1961, Epstein 1968) from the stationary nature of both exact and optimal 
variational solutions to the Schrodinger equation; it is more troublesome, however, 
to obtain the explicit form of the theorem for arbitrary orders, and the previous 
derivations of the quantum mechanical versions involve a rather complex and lengthy 
sequence of algebraic manipulations. 

Neither the remainder nor the Hellmann-Feynman theorem has previously been 
presented within the framework of PVRR. In the present work, both theorems are 
derived in generalised matrix form and incorporated into the PVRR procedure, thus 
extending the formalism; in particular, the generalised PVRR remainder theorem is 
derived in a new and elegant manner. These generalised PVRR theorems include the 
corresponding RS quantum mechanical theorems as special cases. 

This article is organised as follows. The generalised perturbed eigenvalue problem 
is introduced in 3 2 ;  the previous basic PVRR formalism is modified in 8 3 ;  the PVRR 
matrix theorems are derived in § 4; and the extended PVRR formalism is described in 
3 5 .  Finally, in 3 6 we briefly discuss our results. 

2. The generalised perturbed eigenvalue problem 

Consider the generalised Sturm-Liouville type perturbed eigenvalue equation 

(z-&su)l+s) = 0 ,  s = 1 ,2 ,  * * . , (1) 

where 2t is a linear second-order Hermitian operator, U a positive definite weighting 
operator dependent upon the configuration coordinates of the system, and 14’) and 
E ’  are, respectively, the eigenfunction and eigenvalue of the sth discrete eigenstate. 
In classical mechanics, (1) occurs frequently in vibration problems where it is intro- 
duced by the theory of small oscillations; for example, in the previously mentioned 
astrophysical problems, 2 is a second-order integrodiff erential operator, (+ is the 
matter density, and the normal modes of the system are described by the eigendisplace- 
ment vectors 14’) exp(iw’t) where the angular frequencies w’ are given by u s  = ( E ’ ) ~ / * .  

In quantum mechanics, (1) simplifies since U is invariably unity; undoubtedly, the 
most important example is the time-independent Schrodinger equation where %’ is 
the Hamiltonian operator and the E ’  are the energy levels. Throughout, we primarily 
focus our attention on the more general classical eigenvalue equation; our results, 
however, can be readily specialised to the quantum mechanical case. 

Formally, the perturbation enters (1) through a real coupling parameter A ,  indepen- 
dent of the configuration coordinates of the system, which is embedded in %f and U. 

Thus, we can write 

X = %‘(A ), U = u(A), (2a, 6 )  

1 4 s )  = 1 4 ~ ~  E ’ = E ’ ( A ) .  (2c,  dS 
The nature of A depends, of course, upon the specific problem at hand but, in general, 
two quite different categories occur. In the first category, A is a natural parameter 
which can vary continuously or discretely in a neighbourhood of A = 0, thus parametris- 
ing a family of solutions; in the second category, A is introduced to serve as a dummy 
ordering parameter in a perturbational treatment so that it can only assume the 
physically significant value of unity. For generality, we treat the more difficult case 

whence 



3474 J N Silverman 

of natural A ; subsequently, in 0 5, we show how the resultant PVRR formalism can be 
simplified for dummy A .  

Except for a few simple systems such as those previously mentioned, ( 1 )  can neither 
be solved exactly in closed form nor via RS perturbation theory in series form. As is 
well known, in the overwhelming majority of cases, one must resort to expanding the 
14’) in terms of a complete basis set. Let the lqr), t = 1,2 ,  . . . , be an arbitrary complete 
discrete set of linearly independent basis functions which span the Hilbert space of 
the 14’) and satisfy the same boundary conditions as the latter. In general, the Iq‘) 
are selected to be independent of A and, hence, cannot be orthonormal? with respect 
to the weighting function a(A). Note that unlike conventional RS perturbation theory, 
the basis set are not taken to be the eigenfunctions of X e , = X ( 0 )  as the complete 
spectrum of these may not be known and/or may include continuum solutions; the 
advantages of using such an arbitrary discrete basis for atomic and molecular calcula- 
tions have previously been noted by Shull and Lowdin (1959),  Blinder (1960) and 
more recently by Ladik and &ek (1980). Now, expand the 14’) as 

where the Crs are linear expansion coefficients which form a column vector Cs for a 
given s. Introduce the square matrices H, S, C, and E, where 

H = [H”]],  I f r s  = ( c p f l ~ l ~ ” ,  (4a,  6)  

s = [S‘”,  srs = ((Pf/(+lqS), (5a,  6)  

C is the matrix formed by collecting the column vectors C’, 

c = [C’] = [C”], (6a 1 
and E is the diagonal matrix of the eigenvalues E ’, 

E = [ E  ’6s ,s] .  ( 6 b )  

Then, in the usual manner, one obtains the familiar matrix eigenvalue equation 

HC = SCE, (7a 1 
which collects equations ( 1 )  in matrix representation for all s ;  the classical ( 7 a )  is 
more general, however, than the formally equivalent quantum mechanical matrix 
equation constructed with a non-orthonormal basis as here S is not merely the overlap 
matrix of the basis functions. Since H and S are Hermitian and, further, S is positive 
definite, it follows from matrix theory that a nonsingular solution C of ( 7 a )  exists 
which simultaneously diagonalises S to the unit matrix I and H to the eigenvalue 
matrix E :  

CtSC = I, CiHC = E .  (7bL (8) 
In passing, we note that the basis set Iq ‘) can always be initially orthonormalised with 
respect to U to form a new set of A-dependent basis functions. Although this would 
eliminate the S matrix from (7), it would do so at the cost of introducing a more 
complicated A -  dependency in the correspondingly transformed H matrix; in the case 

t The Sturm-Liouville generalised orthonormality condition for the basis set is (cp‘lolqu) = 6,, where 6,, is 
the Kronecker delta. 
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of natural A ,  this would largely divest the PVRR formalism of its computational 
simplicity. We return to this point in S: 5. 

Equations ( 7 )  and (8) are exact since they are of infinite order involving expansions 
in terms of a complete discrete set. In the classical Rayleigh-Ritz (RR)  procedure 
(see, e.g., Gould 1957), the expansion ( 3 )  is approximated by truncation to a finite 
number of terms, say N ,  yielding an RR Ansatz ; in quantum mechanics, of course, 
this procedure is commonly termed the method of configuration interaction. All 
matrices correspondingly truncate to Nth  order and may be denoted by fi, g, e, and 
I?. Due to the variational nature of the problem, ( 7 )  and (8) remain unchanged in 
form although now applying to the RR-approximated finite matrices. For a fixed value 
of A ,  ( 7 a )  can be solved for and e via the standard RR procedure imposing 
normalisation of the e' with respect to ŝ  through (76) .  In this paper, we deal with 
the practical problem of strengthening the PVRR formalism for application to an 
arbitrary RR Ansatz.  Nevertheless, all subsequent results hold equally for both exact 
and RR-approximated solutions for all states; therefore, we need not distinguish 
between them and, in  what follows, we suppress the carets for brevity. 

Finally, in quantum mechanical applications, one has frequent occasion to compute 
the expectation value for the s th  state, ( w ) ' ,  of an arbitrary operator w independent 
of A .  Let ( w )  and denote diagonal matrices which are constructed, respectively, 
from the (w) '  for all states and from the diagonal elements of an arbitrary square 
matrix X .  Then, in compact R R  notation, we have for a given value of A ,  

( w )  = [C' WCIdlag, (9) 
where 

w = [ W " ] ,  w" = (qCI/w/Cp5). ( l o a ,  6) 

3. Modification of the basic PVRR formalism 

Unlike the above RR approach, PVRR focuses attention on the A-dependency of all 
matrices in (7)-(9);  this A-dependency is an immediate consequence of (2)-(6). Let 
2t and c be analytic functions of natural A in a neighbourhood of A = 0. Then 5Y and 
(+ admit convergent power-series expansions in A ,  

although in the majority of quantum mechanical applications, A only occurs linearly 
in the Hamiltonian 2, the general power series is frequently encountered in classical 
problems. Assume that similar RS convergent A-expansions exist €or 14') and E ' .  

Thus, we take 
X 

% ' ( A ) =  !331A1, 3 = 145), € s ,  s = 1, 2 , .  . . . ( 1 1 6 )  

We have assumed that the power series of ( 1 1 )  are convergent, but this is not essential 
to the PVRR formalism since, as previously mentioned, powerful LOPT methods exist 
for summing slowly convergent or divergent RS series. Note that the power series in 
( l l a )  are regarded as known while those of (116) are to be determined via PVRR. To 
this end, substitute ( 1  1) appropriately into 13)-(6) which yields the PVRR A-expansions 

I = o  
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for the various matrices. 

m 
A ( / \ ) =  AIAI, A = H , S ,  

j = O  

and 

where the computationally simple structure of the matrices H, and S, is a direct 
consequence of the fact that the lcp ') are independent of A ; further, it follows from 
(12) that the Hj and Sj  are individually Hermitian and that the Ej are diagonal with 
elements E ; .  On substituting the A-expansions of H,  S,  C, and E into (7) and equating 
coefficients of like powers of A ,  one obtains the hierarchy of coupled PVRR equations, 

upon which much of the subsequent PVRR formalism is based. The zeroth-order 
equations, 

HOC0 = SOCOEO, c;soco = I ,  ( 1 4 ~  6 )  

are solved for EO and CO by standard diagonalisation where the elements E ; )  of Eo 
are the roots of the secular determinant 

In the present treatment, it is required that the E :  form a nondegenerate spectrum. 
Since, in general, the basis set Icp') are not the eigenfunctions of X o ,  one is at liberty 
to define A and shift its origin as one pleases. Thus, in the PVRR approach, zero-order 
exact or near degeneracy can always be simply removed by Taylor-expanding 3t and 
(+, ( l l a ) ,  about some other suitable choice of origin, A o # O ,  to generate a new HO 
and SO with a nondegenerate set of E : ;  it is assumed throughout that this has been 
done if necessary. As is well known, removal of zero-order degeneracy in conventional 
RS perturbation theory is far more troublesome. 

In the original PVRR procedure of Silverman and Sobouti (1978), the Ej and Cj, 
; = 1, 2 , .  . . , are determined successively, order-by-order, by premultiplying (13a) 
with CA and considering, respectively, the diagonal and off -diagonal elements of the 
resultant equations; their formulation, however, is not well suited for computer 
programming, particularly for large-order PVRR series. We now modify this basic 
formalism so as to render it amenable for recursive calculations to arbitrarily high 
order; we also obtain the PVRR series of the quantum mechanical expectation values 
of (9) as these have not been previously considered. Our results can be expressed 
succinctly in a form suitable for the concurrent determination of the PVRR series for 



Extended PVRR formalism 3477 

all N states by introducing the auxiliary matrices P, and Qi defined as 

and 

t # U, j = 1 , 2  , . . . ) -  (16a) 

(166) 

f -1 fU Q,!" = ( E :  - E O )  P, , 
1 I I - k  

0:' E -5 ( k = O  1 i = O  1 ( l - F k O ~ ~ O ) ( l - ~ k ~ i n ) c ~ ~ ~ c , - k ~ , ) ' ~ ,  

Then, it is easily shown that the modified basic formalism yields 

j = 1 , 2 ,  . . . .  

E, = [ P,ldlag, 

Cl = Coal, 

j =  1, 2 , .  . . , i17a) 

(17b) j = 1 , 2 ,  * . . , 
r 1  diag 

Note that both the off-diagonal and diagonal elements of the Pi and Qi are required 
where, in (17b), the diagonal elements of Qj impose the orthonormality conditions 
of (136) on the Ci. In analogy with conventional RS theory, it follows from (15) and 
(17a) that calculation of the E, witn this procedure requires a knowledge of the 
lower-order Ck and Ek through k = j  - 1, while from (17c), calculation of the (w), for 
an arbitrary expectation value requires all lower order c k  through k =i. 

In the following section, we derive two PVRR matrix theorems, valid for all N 
levels of an arbitrary RR Ansatz ,  which enable the basic PVRR formalism to be extended 
to the efficient calculation of very high order Ej. 

4. Derivation of PVRR matrix theorems 

4.1. Generalised PVRR remainder theorem 

Consider the case of the even orders, Ezn, n = 1, 2 , .  . . . Premultiply the first n 
equations of (13a), j = 0, 1, . . . , n - 1 by - Gin-,, omit the ( n  + 1)th equation, j = n ,  
premultiply the next n equations, j = n + 1, n + 2 ,  . . . , 2n by Cin-i ,  and write down 
the resulting 2n product-equations in a triangular array, retaining only the diagonal 
elements. This yields 

= O  

= O  



3478 JNSilverman 

where for brevity of presentation we have introduced the Hermitian matrix G defined 
as 

G s H -  E " s, ( 1 9 ~ )  

with the PVRR A-expansion, 

Now sum the array (18a)  in a column-by-column manner, using the Hermitian 
character of all triple-product terms. Cancellation in pairs of all terms in Ci+1, 
Cii2,. . . , C;,  evidently occurs and one easily obtains 

Equation (20a)  is one formulation of the desired remainder theorem for the even 
orders of the eigenvalue series since the highest-order eigenvector appearing is Ci 
and the highest order eigenvalue is E ; ,  (in Gzn);  we shall shortly bring this expression 
into more convenient form for recursive calculations for all N states simultaneously. 

In the case of the odd orders, EZn+,,  n = 1 , 2 ,  . . . , we proceed in a slightly modified 
manner. Premultiply the first (n + 1) equations of (13a), j = 0, 1, . . . , n by - C&+1-, 
and the second ( n  + 1) equations, j = n + 1, n + 2 ,  . . . , 2n + 1 by Cin+l-,, producing 
this time (2n + 2 )  product-equations; as before, we write these down in a triangular 
array, retaining only the diagonal terms. Thus, 

= O  

= O  

Cf'GoC;, +dfiGIC; , - l  +,. . .+Cf 'G, ,Ci  +C;'G,+lC'f,-l + . .  . = O  

C;tGoC;n+l +Ci tGIC; ,  + . .  .+Ci 'G,Cf,+l  

+ C;TGn+lCT, + . . . +C;'G2n+1C: = 0. 

Summation of ( l 8 b )  in the same manner as (18a) yields 

(206) 

where all terms in have cancelled in pairs. In  (206), which 
expresses the remainder theorem for the odd orders of the eigenvalue series, the 
highest-order eigenvector appearing is Cf, and the highest-order eigenvalue is E 

The 
results can be expressed compactly in a recursive all-states form by introducing the 

CAtZ,. . . , 

Equations (20a)  and (206) are now solved respectively for e; , ,  and 
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auxiliary matrices R Z n  and R2,,+1 defined as 

R2, E 1 1 C;(HjC2n-i-k - 1 = O  sl-iC2n-j-kEl) 
n n - 1  

j = 1  k = n - j  

where only the diagonal elements are required. Then, 

Equations (21) and (221, which are the final form of the generalised PVRR remainder 
theorem, represent a new result. It is important to note that not only the c k  but also 
the Ek,  k = n + 1, n + 2 , .  . . , 2n - 1, have been eliminated from the Rz, ,  and Rzn+l 
matrices; the removal of these Ek results from the automatic orthonormalisation via 
(166) and (17b) of the eigenvector matrix C through n t h  order with respect to S 
when each successive order C,, is computed. Thus, calculation of the E?" and EZn+l  
from ( 2 2 )  requires only a knowledge of the lower-order c k  and Ek through k = n ; 
this elimination of terms leads to a substantial reduction in computational labour, 
particularly for large n .  

The essential simplicity of our derivation of the completely generalised classical 
remainder theorem should be contrasted with the complexity of the previous deriva- 
tions of the various specialised quantum mechanical remainder theorems (e.g., Dupont- 
Bourdelet et a1 1960). By setting the S, =Bo, in (21), one recovers the most general 
PVRR quantum mechanical remainder theorem for an orthonormal basis set indepen- 
dent of A ; in particular, for the common special case of linearly perturbed Hamil- 
tonians, 2 = + RIA, RI = 0 ,  j = 2, 3, . . . , these expressions further reduce to 

n - 1  diag 

E2n = [ CAHlCn-1- 1 = 1  f k = n  C J cIc2n-:-kEi] 3 

n = 1, 2, . . . . (23 1 
n n  

CiHiCn - C i C 2 ' . * i - , - k E J ]  , 
j = 1  k = n + l - i  

Equation (23) generalises the previous result of Hirschfelder et a1 (1964) for the RS 
series of exact solutions to the PVRR series of the N levels of an arbitrary RR Ansatz. 

4.2. Generalised PVRR Hellmann-Feynman theorem 

Our starting point is the generalised Hellmann-Feynman theorem (Silverman 1983b) 
which can be written in the all-states matrix formulation, 
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The formal equivalent of (24) has previously been derived in the context of the 
Schrodinger equation by Lowdin (1959); in quantum mechanics, however, as pre- 
viously mentioned, S is merely the overlap matrix of the basis functions, and the 
possible A-dependency of S can only enter through the basis set. 

Substitute the A-expansions of all quantities into (24) and equate coefficients of 
like powers of A .  By introducing the auxiliary matrix 4. defined as 

one can express the Ej compactly as 

Ej  = [FjIdiag, j =  1 , 2 , .  . , 
Equations ( 2 5 )  are the generalised PVRR Hellmann-Feynman theorem, a new result. 
In analogy with the RZn and Rz,+l,  (21), only the diagonal elements of the Fj need 
be computed. As in the case of (17a), the calculation of the E, via (25) requires a 
knowledge of all Ck and Ek through k = j  - 1. Note that equations (25) reduce to the 
most general quantum mechanical formulation of the PVRR Hellmann-Feynman 
theorem for an orthonormal basis independent of A on setting S, = ISo,. In the special 
case of linearly perturbed Hamiltonians, these expressions further reduce to 

which generalises the result of Carr (1957) for the RS series of exact solutions to the 
PVRR series of all levels of an arbitrary RR Ansatz.  

5. Extended PVRR formalism 

We now extend the modified PVRR formalism of D 3 to large order by means of the 
generalised Hellmann-Feynman and remainder theorems; the most efficient way of 
accomplishing this is exhibited schematically in table 1. The extended PVRR calcula- 
tions assume a natural cyclic structure where each cycle consists of three parts, the 
first pertaining to the modified basic formalism, the second to the Hellmann-Feynman 
theorem, and the third to the remainder theorem. After the n th cycle is completed, 
the C,, E,, and (w), will have been computed for j = 0, 1, . . . , n ;  in particular, E will 
have been determined through n th order by three independent methods, thus affording 
a valuable check on the internal consistency and accuracy of the PVRR calculations. 
Further, the E,, j = n + 1, n + 2, . . . , 2 n  + 1, will have been generated via the remainder 
theorem. The three parallel calculations of the E,, j = 1, 2, , . . , n ,  involve a relatively 
modest additional computational effort since in each order, only the diagonal elements 
of the F,, RZ1, and R 2 , + ,  matrices are required. 

The present formalism entails the concurrent calculation of the PVRR series of the 
N lowest states of a given symmetry where N is the degree of truncation of the basis 
set. Although the PVRR series are perturbationally exact within the framework of a 
given finite RR Ansatz, they are, of course, variational approximations to the corres- 
ponding exact RS series. For systems where one requires a large N to obtain accurate 
variational convergence, the concurrent calculation for all N states becomes impracti- 
cable due to computer storage limitations and the PVRR series of the high-lying states 
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Table 1. Cyclic flow of extended PVRR calculations incorporating the Hellmann-Feynman 
and remainder theorems. 

Highest-order Auxiliary 
i Equations input matrices output  

are then of limited interest due to their generally poorer variational convergence. In 
such cases, one can readily reduce the N-states formalism from first order onwards 
to the calculation of the PVRR series of one state at a time for any desired values of 
s s N ;  the full-scale solution of the zeroth-order equations (14) for all N states must, 
of course, still be obtained. 

Finally, we deal with the problem, previously touched upon in 3 2, of eliminating 
S from (7a)  and, hence, the S, from the PVRR formalism. Consider the case of dummy 
A .  Here, the series expansions of 2 and U,  ( l l a ) ,  are purely formal and result from 
some arbitrary partitioning scheme. We are at liberty, then, to take U as independent 
of A .  Alternatively, for natural A ,  U may also be independent of A in certain systems 
(e.g., all quantum mechanical systems). In these special but widely encountered cases, 
one can advantageously carry out the desired simplification of the formalism via the 
Lowdin (1950) technique of symmetric orthonormalisation; this procedure utilises a 
transformation matrix S - ' / 2  with the property S-1/2SS-1/2 = I .  Equations (7) are 
reduced in this manner to the canonical form, 

GC? = CE, cTc = I ,  b )  

where the transformed I? and c are related to H and C by 

fi, c = s - y  (28a, 6 )  

and the A-expansions of E and c are to be obtained from (27) with the PVRR 

procedure. In the special cases mentioned above, S - 1 / 2  is independent of A so there 
is no difficulty? in forming the hierarchy of PVRR equations from ( 2 7 a )  corresponding 
to (13a). The remainder of the formalism then goes through unchanged and all 
subsequent PVRR equations are simply obtained by respectively replacing the H,, S,, 
and C, with fi,, a0,I, and e, in our previous general results. 

rj-1/2HS-1/2 = 

In the general c_ase of natural A ,  it follows from ( 2 6 )  that S-"* is dependent upon A .  Thus, to form the 
A-expansion of H ,  ( 2 8 a ) ,  required for input, one would have to apply the PvRR formalism initially to 
generate the A-expansion of S-"* .  The computational labour required for this step alone is of the same 
order of magnitude as that required for the complete PVRR solution of the original non-orthonormal 
problem. 
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6. Discussion 

In this paper, we have greatly strengthened the original PVRR formalism of Silverman 
and Sobouti (1978). To accomplish this, we have first modified the basic formalism 
so as to render it highly adaptable to computer programming; we have then extended 
its scope to LOPT studies of both classical and quantum mechanical eigenvalue problems 
by deriving and incorporating the generalised PVRR remainder and Hellmann- 
Feynman theorems. The modified and extended formalism is extremely compact 
because the explicit formulations of conventional RS perturbation theory, which 
become increasingly cumbersome in higher order, have been completely avoided 
through the introduction of several auxiliary matrices. In a single computer run, the 
new procedure permits the accurate recursive calculation to very high perturbational 
order of the PVRR series of all N levels of an arbitrary RR Ansatz .  

We have thoroughly tested and verified all phases of the extended PVRR formalism 
by applying it to the calculation of 1/Z expansions for atomic isoelectronic sequences 
and to the perturbational study of certain molecular problems; these results, which 
illustrate the power of the new procedure, will be presented elsewhere. 
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